Welcome to the world of mathematical distributions! A mathematical distribution is a function that describes the probability of different outcomes in a random event. It is a way to represent the likelihood of different outcomes occurring, and is an important tool in statistics and probability.

There are many different types of mathematical distributions, including the normal distribution, the binomial distribution, and the Poisson distribution. Each type of distribution is characterised by its own set of parameters, such as the mean, variance, and standard deviation, which describe the shape and properties of the distribution.

One way to think about mathematical distributions is to imagine that you are at a party and someone hands you a bag of M&Ms. The bag of M&Ms is like a mathematical distribution, and each M&M is like an outcome. The colour of each M&M is a random event, and the mathematical distribution describes the probability of each colour occurring.

For example, let's say that the bag of M&Ms contains 50% red M&Ms, 30% yellow M&Ms, and 20% green M&Ms. This would be represented by a mathematical distribution with a mean of 50% red M&Ms, 30% yellow M&Ms, and 20% green M&Ms. If you reached into the bag and pulled out an M&M, there is a 50% chance that it would be red, a 30% chance that it would be yellow, and a 20% chance that it would be green.

In summary, a mathematical distribution is a function that describes the probability of different outcomes in a random event. It is an important tool in statistics and probability and is characterised by its own set of parameters, such as the mean, variance, and standard deviation. Just think of it as a bag of M&Ms – each M&M represents an outcome, and the distribution describes the probability of each outcome occurring.